
J .  Fluid Mech. (1985), vol. 157, p p .  1-16 

Printed in Great Britain 
1 

The flow at a rear stagnation point is eventually 
determined by exponentially small 

values of the velocity 
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(Received 9 November 1983 and in revised form 7 December 1984) 

It is suggested that current conceptions about unsteady rear-stagnation-point flow 
do not fully describe the physics, since they show discrepancies from recent numerical 
results. The previously neglected exponentially small rotational perturbation velocity 
above the boundary-layer proves to have a dominating influence on the final 
boundary-layer development. An asymptotic analysis reveals possible difficulties for 
common computational schemes for viscous flows. Failure of the usual asymptotic 
matching rule in the analysis is in accordance with Fraenkel’s warning on logarithmic 
expansions. 

1. Introduction 
Unsteady flow at a rear stagnation point is one of the most basic problems in fluid 

mechanics (Schlichting 1979). In  the framework of the Navier-Stokes equations, i t  
is one of the relatively few exact solutions which retains the nonlinearity of these 
equations. In boundary-layer theory, the flow Occurs whenever a smooth finite body 
is started from rest. 

It is therefore alarming when a careful computation of the flow about an 
impulsively started rear stagnation point by Williams (1 982) shows serious discrep- 
ancies from the semi-analytical results of Proudman & Johnson (1962), and its 
extension to higher order of approximation by Robins & Howarth (1972). 

In  a different context, in connection with unsteady boundary-layer separation, we 
became interested in this problem and decided to try to clarify the differences by a 
Lagrangian computation. The advantages of Lagrangian coordinates at a rear 
stagnation point had already been pointed out by Van Dommelen & Shen (1 980). 
Additional accuracy was possible by restricting the attention solely to the rear 
stagnation point. The Lagrangian scheme is identical with the one in Van Dommelen 
(1983) for solving the flow at the meridional plane of the impulsively spun sphere. 
The computational aspects are therefore omitted in the following. Only the conclusion 
is of importance : our Lagrangian computation fully supports the deviations reported 
by Williams. 

Table 1 compares the Lagrangian results at various mesh sizes, in order to convince 
ourselves that the deviations are not due to numerical errors. The results of Robins 
& Howarth (1972) agree with those of Howarth (Hommel 1983) using a full 
NavierStokes scheme. Also shown in table 1 are results obtained by Hommel(l983) 
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and by Cowley (1983), both of whom arrived a t  their results by extending the Blasius 
small-time expansion to high order of accuracy. 

For moderate times, all results are in excellent agreement, but when the boundary 
layer becomes thick differences start to show. Our results support those of Cowley 
and Williams, who provided data up to t = 5. In particular we agree with Williams 
that the numerical results deviate from the semi-analytical curve given by Robins 
& Howarth. 

The question arises whether the discrepancy can be eliminated by mere adjustment 
of the undetermined constants in the analytical curve, or that modification of the 
theory itself is required, In this paper, we will argue that conoeptual modifications 
in the theory are in fact necessary. 

2. The Proudman & Johnson theory 
The stagnation point flow will be described in an (X, Y)-axis system with the Y-axis 

aligned with the axis of symmetry; the potential-flow velocity gradient is used to 
non-dimensionalize the time coordinate. The stream function may be written as 
!P = - X Re4 +(y, t )  and the velocify parallel to the wall as U = - Xu(y, t ) ,  where 
y = Re! Y and Re is the Reynolds number. In this notation, the Naviedtokes 
equations reduce to : 

ut-u=++uy=-l+uyy, u = &  (1 a) 

+(Y,O) = Y, U(Y,O) = 1 (Y * O ) ,  (1 b )  

(1 c) 

If this is regarded as an unsteady boundary-layer problem, the ‘displacement 

(1 4 

I +(O, t )  = 0, u(0, t) = 0, 

$(oo , t )  - y-S*, U(00, t )  = 1. 

thickness ’ 
S* = s,” l-wdy 

does not represent the true displacement of the fluid at the outer edge of the boundary 
layer (Moore & Ostrach 1957). Above the boundary layer, the particle paths follow 
from integration of the continuity equation as : 

I y = Cet-y:; C = constant; 

It is the integral y: that corresponds to the true downward displacement of the fluid. 
On account of these particle paths, it  is convenient to introduce a reduced 

coordinate 
u = y e-t, ( 2 b )  

and a reduced displacement thickness 

D = 6* e-t. 

Thus the particle paths above the boundary layer become 

I u+ u: = Au = constant, 
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The stagnation point flow (1 a-c) was first determined for small times by Blasius 
(1908). According to  his solution, the flow near the wall would reverse direction at 
time t x 0.7. However, the reversed flow occurs only near the wall and will not affect 
the analysis of this paper, which is mainly concerned with the boundary-layer flow 
at large distances from the wall. 

Possible self-consistent behaviour of the flow for large times was examined by 
Proudman & Johnson (1962), following the earlier linearized work of Moore (1958). 
According to  Proudman & Johnson, the boundary-layer thickness would not tend 
to a finite limit for large times, but continue to  grow exponentially. Further, there 
is no downward convection at the outer edge of the boundary layer to  limit the growth 
of t,he boundary layer by viscous diffusion. 

Yet when the boundary layer becomes thicker, the viscous effects do become 
correspondingly weaker. Proudman & Johnson proposed that the final stages would 
be inviscid, and that a definite shape of the velocity profile would emerge: 

u - 1 - F;(s), 

where the shape function FA was still unknown and s is a suitably defined similarity 
variable. We have slightly modified the analysis of Proudman & Johnson to simplify 
later arguments ; for a more precise discussion the reader is referred to the original 
reference. 

The equations of motion (1) may be rewritten in terms of the similarity coordinate 
s as: 

$ y-+S*F(s, t ) ;  

FF"+F'(2-Ff) = -D-lDt sF" +F;-4 e--2tD-2F1". J 
F N F,+ ...; 

(4) 

where accents denote differentiation with respect to  the similarity coordinate. 
In  solving for the velocity profile, Proudman & Johnson found that D-lDt must 

tend to zero for large times. If this condition is not met, the velocity profile decays 
too slowly to allow a match with an external flow in which the vorticity is 
exponentially small. Only when D-'Dt is small does the solution decay exponentially : 

F, = 2(1-ePS); 

F; = 2 eP8 - l-u (D-'Dt - 0) 

Proudman & Johnson now take this constraint to mean that the reduced 
displacement thickness D tends to a constant for large time. I n  a footnote, they add 
that the analysis is only approximate, and that there is no assurance that D will indeed 
approach a constant value. However, they do not elaborate and proceed t o  define 
a 'constant c '  in their figure 2 which requires constant D .  Neither do Robins & 
Howarth pursue the matter any further. 

I n  figure 1, the computed values for 1/D2 are compared to  the large-time values 
s: and s1 proposed by Proudman & Johnson and Robins & Howarth, respectively. 
The computed results do not appear to converge t o  either one of these values. And 
the higher-order approximations s2 and s3 found by Robins & Howarth do very little 
to improve the agreement for later times. The shown curve s3 corresponds t o  the curve 
plotted by Robins & Howarth: in their analytical expression for this curve there 
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I I - 
t 0 5 

FIGURE 1. The quantity l/Ds, with D the reduced displacement thickness, (2c). Previous large-time 
theory predicts the curves .sl, and sl), for increasing level of approximation; present theory predicts 
the curves 0, 1 and 2. The dots denote values according to Williams (1982). 

appears to  be a redundant factor 'c'  which would increase the deviation from the 
computed results. 

Yet, the condition of vanishing D-lD, allows much more general asymptotic 
behaviour for D than just a constant. The result D = O(t-i) suggested by figure 1 
satisfies the condition, as does any algebraic blow-up or vanishing of D.  Thus, there 
is a large indeterminacy in the expansion. This indeterminacy continues to higher 
order, although it has been eliminated by Robins & Howarth by the ad hoc 
assumption that the displacement effect of a viscous wall layer indicates the second 
term in the expansion. 

However, we will show that the indeterminacy arises from a missing constraint in 
the Proudman & Johnson analysis : the solution should match the exponentially small 
rotational velocities above the boundary layer. In this additional matching, all 
indeterminacy is removed and we find D - t-! instead of being constant. Further the 
second term in the expansion is found to be algebraically small rather than 
exponentially small as proposed by Robins & Howarth. 

3. Present theory 
An aspect of the Proudman & Johnson solution which appears to have been 

overlooked previously is the surprisingly slow exponential decay of the velocity profile 
toward the external flow value u = 1. While their result has 

1-u, = 2 exp (-;") - ( 8  = % % l), 

the Blasius small-time profile decays considerably more rapidly : 

1--u - exp(-lKlaZ)[o(l)+ ...I (u+m), (6b)  

where o( 1) stands for a small algebraic factor which is not of importance at this stage 
and K = K(t ) .  
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After this study had been completed, we learned of the linearized analysis of Moore 
(1958), which does show a stronger rate of decay similar to (6b) .  In fact, our proposed 
asymptotic expansions of the velocity profile, (1 1 a, b) and (24) will agree with Moore's 
linearized solution. Thus the Proudman & Johnson nonlinear result becomes even 
more surprising. Inclusion of the exponentially small velocities above the boundary 
layer in the analysis is clearly indicated in order to settle the point. 

Our approach will be first to derive a self-consistent expansion for the exponentially 
small velocities at finite times and at large distance cr from the wall. The undetermined 
constants in this expansion can be found from matching with the known Blasius 
small-time expansion. The expansion cannot directly be matched with the Proudman 
& Johnson solution for large times, but we will introduce a transition layer in which 
the velocity is described as an exponentially small perturbation of the potential flow. 
At its lower side the transition layer matches the Proudman & Johnson velocity 
profile and at its upper side the large cr-expansion. It describes, therefore, the 
transition from the slower decay (6a)  to the faster decay (6b) .  

Now, the usual method of matched asymptotic expansions is not very suitable for 
handling exponentially small terms. It is convenient, therefore, to take the logarithm 
and define the reduced velocity v as: 

v = In (1 -u) (v = v(u, t ) ) .  (7)  

Apparently, such a simple redefinition of the dependent variable is not sufficient for 
the class of problems addressed by Lange (1983), but must there be supplemented 
by conservation of energy. 

The Proudman & Johnson similarity solution predicts a linear asymptotic behaviour 
of the reduced velocity: 

D D 

valid when s, but possibly not cr, is large. Our proposal is a quadratic dependence 
for truly large u: v - Ku2, K = K(t)  < 0 ( a m ) .  (9) 

The motivation for our proposal becomes evident when the governing equations 
of motion ( 1 )  are rewritten in terms of the reduced variables u and v :  

vt-@vU-2+ee" = e-2t(v:+vu,);\ 

@(u,O) = 0, v ( a , O )  = -m (a * 0); ( l o b )  

v(0,t) = 0, v (m, t )  = -m. (10c) 

The viscous terms in ( I O U )  are the ones on the right-hand side multiplied by edZt and 
are here nonlinear. It is this nonlinearity which allows friction to alter the magnitude 
of v far from the wall from its original value v = - m at t = 0. 

Balancing of the nonlinear dissipation term v: with the time-rate-of-change term 
vt in (10a) is achieved by requiring 

v - K o u 2 ,  K O < O  (u-tm),  

KO, = e-2t4K& (I la)  

The ordinary differential equation ( l l a )  may be integrated in closed form. The 
integration constant may be determined, since clearly the time that KO becomes 
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FIGURE 2. The reduced velocity v against the reduced coordinate u, according to various results. 

singular should be identified physically with the time of the impulsive start. Thus 
the solution is found to be -1 

KO = 2 1 - e-2t ' ( 1 l b )  

It may be verified that for small time these results describe the asymptotic behaviour 
of Blasius's error function profile : - 

In summary, our proposal, (9), is that the reduced velocity should blow up 
quadratically rather than linearly for large u. The coefficient of proportionality is 
determined by (1 1 b). To verify this asymptotic behaviour numerically, however, is 
not as simple as it may seem, since the corresponding velocities are exponentially 
small. Our numerical results, shown in figure 2 for t = 4.5, include several curves to 
indicate the convergence with respect to mesh-size refinement. 

Proudman & Johnson present data up to v = 0.6, which follow the straight line 
PJ in figure 2. In order to avoid confusion with other curves, we have shifted the 
line PJ downward. Our results show excellent agreement with these data for CT < 0.5, 
but for larger values of u our data continue to curve away from their straight line. 

The numerical results in figure 2 cannot be represented by a straight line in the 
range shown. On the other hand, the proposed leading-order term (1 1 a, b )  presents 
an even poorer approximation to the numerical data, and there is no undetermined 
constant to force a bctter agreement. But, in the next section, the present theory will 
allow us to find higher-order approximations, (1) with an error of order O( 1/Au2) and 
(2) with an error O(l/Au4). As shown in figure 2, these approximations do lead to 
excellent agreement with the numerical data. 
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Since curves 1 and 2 in figure 2 do not involve undetermined constants, we can 
feel confident that the exponentially small velocities above the boundary layer are 
correctly described by our theory, rather than by the Proudman & Johnson linear 
relationship. Prom an  analytical point of view, a linear relationship seems further 
inconsistent with the Blasius small-time solution, since substitution into (10a) would 
suggest that the linear relationship would be valid for all times. 

The quadratic relationship (11)  also seems inconsistent with the Proudman & 
Johnson result, but we will show that a transition layer of exponentially small 
rotational velocities is present above the profile in which the quadratic asymptotic 
behaviour is achieved. We will start with deriving the equations which govern the 
motion in the transition layer, rather than t o  try to  derive its structure immediately. 

Above the boundary-layer region, the equations of motion (10) simplify since the 
ev term is exponentially small. I n  addition, the boundary-layer-displacement effect 
may be eliminated completely. This simplification is achieved by definition of the 
coordinate 

A u  = u+u:. (12a) 

The simplified equation of motion, 

vt - 2 = e-"(vi, + vAaAu)r 

becomes linear when rewritten in terms of the true velocity: 

ut-2(u-1) = e-2tuA,A,. 

For large time, the viscous terms at the right-hand side of (12b) will be transcen- 
dentally small, provided that the scalings of v and Acr are algebraic in t. According 
to the results of this paper, this is in fact the case (the proper scalings are v = ti? and 
A a  = tiat?). It then follows from (12b) that  to  terms which are algebraically small, 
the transition layer is described by 

v = 2t+ V(Au)+exp (-v + 1). (13) 

Actually u and A u  turn out to be O ( d )  and v = O ( t ) ,  so that the viscous terms in (12b) 
are indeed exponentially small. 

According to the already known expansion for large u, (1  1 a, b), the still unknown 
function V(Aa) should expand for large values of its argument as: 

V(Au) - iAu2.  (14) 

The next step is to show that the above expansion for large Au is also the required 
expansion of the transition layer for large time. To make the step, an a priori 
estimate is needed to  the effect that  the boundary-layer-displacement parameter u:, 
defined by ( 2 4 ,  becomes large. For, that  will imply the required result, 

Au>u:+ 1 .  

I n  the analysis of Proudman & Johnson, the condition of large displacement 
is certainly satisfied, since a,* would be O(t). And while our numerical results in 
figure 1 indicate a more modest displacement thickness, they still integrate to 

The exponentially small velocities a t  large times are now found as the large 
u: = O(ti). 

Aa-expansions (1 3), (14) : 

v - 2t-;u,*2-rTa,*u-;a2 (-v + 1 ,  t+oo) .  (15) 
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Because of the assumptions made, this result will become invalid in the similar 
region, where the velocity becomes finite. Thus, in the similar region the positive 2t 
term in (15) becomes comparable to the other terms: 

2t - *p. ( 1 6 4  

The characteristic lengthscale will there be u = O( l / u z )  ; in fact the similarity solution 
(8) is consistent with (15) if: D - 2 / ~ , *  

The similar region can only be consistent with the known exponentially small 
velocities above it when its displacement effect satisfies the constraints (16a, b). They 
determine the displacement effect as : 

I a,* - 2t4+ ... , 
D = - t f +  ... . 

The result for the reduced displacement thickness is shown as curve 0 in figure 1. 
Higher-order approximations are shown as 1, with an error O(t2  ln2 t )  in D ,  and 2,  
with an error O ( t 3  Ins t ) .  Remarkably, all these approximations are free of undeter- 
mined constants. Not only the qualitative behaviour of the displacement thickness, 
but also the actual values may be determined analytically for large times! 

The values of the wall shear may also be found analytically. The similar velocity 
profile (5)  predicts a velocity near the wall which is precisely the opposite of the 
external flow velocity. Thus the inviscid flow near the wall resembles a front 
stagnation point rather than a rear one. As a consequence, near the wall a steady 
front-stagnation-point boundary layer develops (Proudman & Johnson 1962) : 

@ -fo(Y)+... 2 (18) 

wherefi describes the familiar Hiemenz flow profile, with a wall shear 

f," = - 1.2326. 

This prediction is in very good agreement with the numerical data, as shown in 
figure 3, but actually the prediction would be valid for virtually any reasonable 
assumption for the behaviour of the displacement thickness D. 

The curves s;, s,' and s3 represent increasingly accurate approximations to the wall 
shear according to Robins & Howarth. Yet their close agreement with the numerical 
results does not form as strong a vindication of the Proudman & Johnson analysis 
as it might seem. For, these higher-order approximations involve undetermined 
constants, and Robins & Howarth have chosen two of these constants to get the best 
agreement with the computed wall shear for curves 8,' and s3. 

The only undetermined constant in the curve s; was found in another way, and 
this curve is in much poorer agreement with the numerical data. The curve s; is also 
poorer than the present higher-order approximations 1 and 2 ,  yet s; should have an 
error of only O(e+t), while the curve 1 has an error O(t-i e-t) and the curve 2 an error 
of about O(t-3 e-t). Curves 1 and 2 do not involve undetermined constants, except 
that the usual perturbation problems to Hiemenz flow must be solved numerically 
to find them. 
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FIGURE 3. The wall shear according to previous and present theories. 

4. More terms 

the solution to the reduced equations of motion (10) may be expanded as: 
The results will now be extended to higher orders of approximation. For small time, 

According to Blasius (1W8) 

vo - In (erfc 7). (194 

It is convenient to rewrite vl and v2 in terms of new functions c1 and {is: 

since the solutions for the problems for C1 and G2 have already been given in the 
literature. In  particular the solution for G1 was due to Blasius. The solution for I& 
is very laborious and the results given by Goldstein & Rosenhead (1936) contain 
mistakes. In  fact, these results would introduce O ( d )  and O ( @ )  terms in the 
asymptotic expansion, invalidating all our analysis. But the results of Wundt (1955) 
are probably correct, in his notation. At least, the function C, tabulated there is 
correct to six digits. This was verified by a numerical solution of the ordinary 
differential equations satisfied by v1 and v2 which we carried out. Moreover, no 
inconsistencies were observed in the matching with the large cr-expansion. 

Using Wundt’s results, the small-time solution expands at the outer edge of the 
boundary layer as: 



( : 2. do = n-t ,  d ,  = -do 1 --+- J 
The constants do and d,  correspond to the coefficients in the small-time expansion 
for the displacement thickness : 

(21 1 
Rewritten in terms of r ~ ,  the above results show that at the outer edge the 

6* - 2t4[d0 + td, + . ..I. 

boundary-layer flow expands as : 

w - Kom2+K,m+K2 ln(m)+k,+-+-+-+O K3 K4 K5 
m m2 a9 

KO - - l t - ' - l - l t + . . .  4 4 12 

K1 N - $ o t 4 - i ( d l + $ o ) 6 + . . .  ; 

K2 N - 1 +o( t2) ;  

k2 - f In (4t)  + In (do) +$+f ( f -$d i )  t2+.  . . 
K3 N - ~ 0 6 + ~ ( d o - d , ) d + . . .  ; 

K4 N -2t -4(  1 +%;) t2 + 8($+@,2) t3 + . . . ; 
K5 - %,ti+ ... . 

Additional simplifications are possible by rewriting the expansion in terms of Au : 

L L, L 
v k  L , A ~ T ~ + L , A U + L ~ ~ ( A ~ ) + I , + ~ + ~ + - + O  

Am Au A 8  

Substitution in the equation of motion (12b)  leads to a system of ordinary differential 
equations for the L, and 2,. The solution matches the small-time expansion (23)  for 
suitable values of the integration constants. Thus it is found that L, = L, = L, = 0 
and 

2, = - f In I Lo I + In (do)  + 2t, 

L, = fL;l- (t+Vd:) LOB. 
(25)  

The expansion (24)  with an error O(lnAa) falls outside the boundaries of figure 2. 
The expansion to error O(l /Aa2)  is shown as curve 1 and to error O ( l / A d )  as 
curve 2 .  

For large time, the above results show that the asymptotic expansion for w proceeds 
as : 

w = 2t + V(Aa) + exp, 

- -iAua - In (Am) + In (2td0) + 2t -- 

Determination of flow at a rear stagnation point 11 
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It is here possible to introduce formal new variables cr /d  and r,*/e, but the bottom 
line is again that the above expansion for large ACT is equivalent to the expansion 
for large time of the flow in the transition layer. 

The obtained solution (26) expands near the wall as: 

v - 2t-$~r,*~ - a,* a-!ja2 - In (a,*) + In (&do) - a,*-l a+. . . - (i+vi) a:-2 + . . . . (27) 

I n  order that this result be matchable with the similarity profile (6a) ,  the similar 
region should generate a displacement parameter a,* satisfying 

2t--:2-In(a,*)+In(dd0) - In@), (284  

p - l/a,*. (28b) 

(294  

(29b) 

while its characteristic dimension should be 

The displacement parameter follows from (28a) as 

CT,* - 2t4 -it+ {In (2t4) - In (&,/d)> + . . . . 

D - t t+ft+[ln (2t+)--ln (d,/2+)- 11, 

The displacement thickness is described as the derivative of a:, hence, 

which verifies the requirement (28b). This result is shown as curve 1 in figure 1. 
Before proceeding to higher order, the coordinate s will be redefined slightly: 

s = uta. (30) 

Furthermore, we will use CT,* as the independent variable instead of t ,  so that t will 
now be regarded as a function of a,*. The main advantage is that the logarithmic term 
differentiates away in (28a), but not in (29a). 

The transformed equations of motion (4) become 

C T ~  FLt + S F  
FF" + F (  2 - F') = - e-2t CT,F"'.  *2 

g,* tug 

There are two matching processes involved : the finite part of F should match the 
boundary-layer-displacement parameter CT,*, while the exponentially small terms 
should match the exponentially small velocity e". Rewritten, this yields 

F - n,*D = c:/tVg, In (F') - v. (31b) 

F - 2-2~~ ,* -~+ . . .  , (324  

The first matching requires, on account of (28), 

and the second, according to (27), 

l n ( F )  - ~ ~ - ; C T , * ~ - S - ~ C T * - ~ S ~  2 0  

-In (cT,*) + In (24d0) - C T , * - ~  s - (i+vi) a,*-2 + O(V,*-~).  (32 b) 

Since the homogeneous perturbation solutions to (31 a) have non-zero values a t  
large s, the first term in the further expansion of F must be: 

F -  F , + C T , * - ~ F ~ + . . .  . 
Substitution in (31 a) shows 

(334  

Fl = 2[s ePs +e-s- 13 [l +In (1 -e-8)] + [ s2 +2s-2 j: ds'] e-g. (33b) 
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The reduced velocity follows as 

F‘ 
In (F’) = In (Fk) + a,*-a A+. . . - - 8  +In (2) + a,*-a[~na-!js2 -81. (34) 

F; 
This matches. (32a) if 

2t-!ja~2-In(a~)+1n(2.fd,)-(~+93u.,*-2 - l n ( 2 ) + @ ~ ~ - ~ .  (35a) 

The third-order expression for the displacement thickness may now be found from 
inversion and differentiation : 

D - t*+it+D, +&t-f[3D: -20, +na +4d: + 121 + . .. ;) 

This result is shown as curve 2 in figure 1. 
Near the wall, the flow in the nonlinear region expands as 

u = 1 - F’ - - 1 + 2s[1+ a,*-2 In (9) + . ..] +s2[ .. .I, (36) 

since all higher-order perturbations to F start with a factor s. In  this case, the 
asymptotic matching rule will prove to fail. In order to avoid this difficulty, a more 
detailed description must be given of the inviscid-flow region at exponentially small 
8 ,  but still above the Hiemenz layer. 

From a physical point of view, there seems little reason to doubt the suggestion 
by (36) that the flow will be described as an exponentially small perturbation of an 
u = - 1 front-stagnation-point flow. In  other words, we postulate the governing 
equations to be 

where the exponentially small perturbation velocity u’ satisfies the equations of 
motion : 

Subtraction of the Hiemenz-flow displacement thickness 8; is a sensible simplification, 
since the only change it requires in the problem is that the wall boundary condition 
is satisfied at Ay = -8% rather than at y = 0. It avoids having to carry along the 
value of 8% at each subsequent step. 

$ = -Ay+exp, Ay y - 8$, u = - 1 + u‘, ( 3 7 4  

(37 b)  U; = Ay u;, - 2 ~ ’ .  

The solution to the perturbation problem (37) is of the general form : 

The requirement that this result be consistent with the obtained expansion (36) for 
small s determines the behaviour of the functionffor large values of its argument : 

But, for a result described by such an expression, the asymptotic matching rule 
cannot be used. Indeed, if we introduce an infinity of ‘intermediate ’ coordinates, 

7 e-at Ay e-b+l)t p ( O < a < 1 ) ,  

then the results (38), (39) expands differently in each region, namely, rewritten in 

u’ = 2Ay e-t{[2(l+a)t]t+...}. 
terms of Ay as 
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Use of the asymptotic matching rule is equivalent to expanding the function &) 
in the s-region, where a = 1, then rewriting it in terms of Ay to the above result with 
a factor [4t]t. But directly expanding&) in the Ay-region, where a = 0, will give the 
correct result [2t]:. Note the insidiousness of the failure: the result is of the correct 
sign and only wrong by a factor of2k If it is compared with the computed wall shear, 
one would be tempted to suppose that the computed times are too low for precise 
agreement. 

The reason for the failure is clear, of course: the expansion (36) is really an 
expansion in powers of logarithms in the notation of Fraenkel (1969). In  that 
notation, the srriall variable is defined as the ratio of the inner and outer scales, i.e. 
as e-t. The suggestion by Lo (1983) to avoid the difficulty seems less helpful here, 
since we can evaluate neither of the Fraenkel operators. Our approach in postulating 
the governing equations (37) follows the ideas of Kaplun (1967). 

Turning the attention then, finally, to the Hiemenz layer, the results (38), (39) 
expand at  algebraically large Ay as: 

(40a) 

(40b) 

u - - 1 + 2 Ay e-t{[2t]:+ [2t]-: [In (Ay) +In (do/&)] + . . .} + . . . . 

$ -fo(Ay)+e-t{[2t]~flo(Ay)+[2t]-~f,,(Ay)+ ...}+ ... . 
Thus in the Hiemenz layer the flow expands further as: 

By RungeKutta solution of the perturbationsf,, andf,,, the wall shear is found as 

$vu --1.2326+eVt1.6337 

This result is shown to increasing order of approximation as curves 0, 1 and 2 in 
figure 3. The curve 2 reduces the remaining discrepancy by only 29% at t = 4.5, 
but this has already improved to 39% at t = 7. 

Notice the remarkable result that the coefficient do in the small-time expansion 
reappears here in the large-time expansion for the wall shear ! , 

5. Conclusion 
A self-consistent, large-time description for the unsteady flow at a rear stagnation 

point was first proposed by Proudman & Johnson (1962) and generalized by Robins 
& Howarth (1972). In the expansions, a considerable amount of indeterminacy arose, 
which was eliminated by means of ad h c  assumptions. However, these assumptions 
do not lead to good agreement with computed results for the displacement thickness. 
As an example, figure 1 shows that the quantity e2t/6*2 does not tend to the expected 
constant value, at least not for 0 < t < 7. 

According to our analysis, the reason is that Proudman & Johnson matched their 
velocity profile at its upper edge only up to algebraically small terms with the 
‘potential flow’ above. We find it necessary that the matching also includes the 
transcendentally small rotational velocities above the boundary layer. 

By means of this additional matching, all indeterminacy in the expansions did in 
fact disappear. The reason was that the transcendentally small rotational velocities 
are governed by a linearized problem, (12c), and could be found analytically for all 
times. 

It is a remarkable result that according to our analysis, the transcendentally small 
rotational velocities dominate the eventual mechanics of the boundary layer. This 
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is possible on account of the expression (13) for the streamwise velocity gradient u 
above the boundary layer : 

(42) 

which shows that the rotational part of u grows proportional to ePt. Further, since 
y$ - 2ti et these growing disturbances are transported downward toward the 
Proudman & Johnson main boundary layer below. 

This result, that the Naviedtokes and boundary-layer equations may amplify 
originally very small velocities, must be a concern in numerical schemes. In  
boundary-layer computations, a common numerical approach enforces the external 
flow boundary condition at a finite distance from the wall. Clearly, that is equivalent 
to setting the exponentially small velocities at the outer edges of the boundary layer 
to zero. But then the computation would no longer contain the very information 
which determines the solution for later times. 

Another difficulty in an Eulerian computation is the need to differentiate the 
functionf{ } in (42) numerically. The asymptotic shape of this function is 

u = 1 -e"f{(y+y$) e-t> ' (1 -u  4 1) 

exp { - t eP2Yy + yo*)'}, 

and, to discretize such a function, the required resolution increases away from the 
wall. Indeed, the characteristic lengthscale is found as 

Our Lagrangian computation has the advantage that there is no need to evaluate 
the spatial derivative in the convective term. 

It would seem plausible that the deviations between various computations at larger 
times (table 1,  figure 2) could at least partly be due to  the above difficulties. 

The numerical computations were carried out by Mr Tsuyin Wu, graduate student 
at Cornell University. We would like to thank the referees for a number of significant 
improvements. This research was supported by the office of Naval Research under 
Grant N00014-77-C-0033. 
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